
2 Review of Set Theory

Example 2.1. Let Ω = {1, 2, 3, 4, 5, 6}

2.2. Venn diagram is very useful in set theory. It is often used
to portray relationships between sets. Many identities can be read
out simply by examining Venn diagrams.

2.3. If ω is a member of a set A, we write ω ∈ A.

Definition 2.4. Basic set operations (set algebra)

• Complementation: Ac = {ω : ω /∈ A}.

• Union: A ∪B = {ω : ω ∈ A or ω ∈ B}

◦ Here “or”is inclusive; i.e., if ω ∈ A, we permit ω to belong
either to A or to B or to both.

• Intersection: A ∩B = {ω : ω ∈ A and ω ∈ B}

◦ Hence, ω ∈ A if and only if ω belongs to both A and B.

◦ A ∩B is sometimes written simply as AB.

• The set difference operation is defined by B \A = B ∩Ac.

◦ B \ A is the set of ω ∈ B that do not belong to A.

◦ When A ⊂ B, B \A is called the complement of A in B.

12



2.5. Basic Set Identities:

• Idempotence: (Ac)c = A

• Commutativity (symmetry):

A ∪B = B ∪ A , A ∩B = B ∩ A

• Associativity:

◦ A ∩ (B ∩ C) = (A ∩B) ∩ C
◦ A ∪ (B ∪ C) = (A ∪B) ∪ C

• Distributivity

◦ A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

◦ A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

• de Morgan laws

◦ (A ∪B)c = Ac ∩Bc

◦ (A ∩B)c = Ac ∪Bc

2.6. Disjoint Sets:

• Sets A and B are said to be disjoint (A ⊥ B) if and only if
A ∩B = ∅. (They do not share member(s).)

• A collection of sets (Ai : i ∈ I) is said to be pairwise dis-
joint or mutually exclusive [9, p. 9] if and only if Ai∩Aj = ∅
when i 6= j.

Example 2.7. Sets A, B, and C are pairwise disjoint if

2.8. For a set of sets, to avoid the repeated use of the word “set”,
we will call it a collection/class/family of sets.

13



Definition 2.9. Given a set S, a collection Π = (Aα : α ∈ I) of
subsets2 of S is said to be a partition of S if

(a) S =
⋃
Aα∈I and

(b) For all i 6= j, Ai ⊥ Aj (pairwise disjoint).

Remarks:

• The subsets Aα, α ∈ I are called the parts of the partition.

• A part of a partition may be empty, but usually there is no
advantage in considering partitions with one or more empty
parts.

Example 2.10 (Slide:maps).

Example 2.11. Let E be the set of students taking ECS315

Definition 2.12. The cardinality (or size) of a collection or set
A, denoted |A|, is the number of elements of the collection. This
number may be finite or infinite.

• A finite set is a set that has a finite number of elements.

• A set that is not finite is called infinite.

• Countable sets:
2In this case, the subsets are indexed or labeled by α taking values in an index or label

set I
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◦ Empty set and finite sets are automatically countable.

◦ An infinite set A is said to be countable if the elements
of A can be enumerated or listed in a sequence: a1, a2, . . . .

• A singleton is a set with exactly one element.

◦ Ex. {1.5}, {.8}, {π}.
◦ Caution: Be sure you understand the difference between

the outcome -8 and the event {−8}, which is the set con-
sisting of the single outcome −8.

2.13. We can categorize sets according to their cardinality:

Example 2.14. Examples of countably infinite sets:

• the set N = {1, 2, 3, . . . } of natural numbers,

• the set {2k : k ∈ N} of all even numbers,

• the set {2k − 1 : k ∈ N} of all odd numbers,

• the set Z of integers,
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Set Theory Probability Theory
Set Event

Universal set Sample Space (Ω)
Element Outcome (ω)

Table 1: The terminology of set theory and probability theory

Event Language
A A occurs
Ac A does not occur

A ∪B Either A or B occur
A ∩B Both A and B occur

Table 2: Event Language

Example 2.15. Example of uncountable sets3:

• R = (−∞,∞)

• interval [0, 1]

• interval (0, 1]

• (2, 3) ∪ [5, 7)

Definition 2.16. Probability theory renames some of the termi-
nology in set theory. See Table 1 and Table 2.

• Sometimes, ω’s are called states, and Ω is called the state
space.

2.17. Because of the mathematics required to determine proba-
bilities, probabilistic methods are divided into two distinct types,
discrete and continuous. A discrete approach is used when the
number of experimental outcomes is finite (or infinite but count-
able). A continuous approach is used when the outcomes are con-
tinuous (and therefore infinite). It will be important to keep in
mind which case is under consideration since otherwise, certain
paradoxes may result.

3We use a technique called diagonal argument to prove that a set is not countable and
hence uncountable.
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